Exercise 91

The mass of part of a wire is $x(1+\sqrt{x})$ kilograms, where x is measured in meters from one end of the wire. Find the linear density of the wire when $x=4 \mathrm{~m}$.

Solution

The linear density of a wire is the derivative of the mass with respect to the length.

$$
\begin{aligned}
\frac{d m}{d x} & =\frac{d}{d x}[x(1+\sqrt{x})] \\
& =\left[\frac{d}{d x}(x)\right](1+\sqrt{x})+x\left[\frac{d}{d x}(1+\sqrt{x})\right] \\
& =(1)(1+\sqrt{x})+x\left(\frac{1}{2} x^{-1 / 2}\right) \\
& =(1+\sqrt{x})+\left(\frac{1}{2} x^{1 / 2}\right) \\
& =1+\frac{3}{2} \sqrt{x}
\end{aligned}
$$

Therefore, when $x=4 \mathrm{~m}$, the linear density is

$$
\left.\frac{d m}{d x}\right|_{x=4}=1+\frac{3}{2} \sqrt{4}=4 \frac{\mathrm{~kg}}{\mathrm{~m}} .
$$

